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Empirical policy research often focuses
on causal inference. Since policy choices
seem to depend on understanding the
counterfactual–what happens with and
without a policy–this tight link of causality
and policy seems natural. While this link
holds in many cases, we argue that there are
also many policy applications where causal
inference is not central, or even necessary.

Consider two toy examples. One pol-
icy maker facing a drought must decide
whether to invest in a rain dance to in-
crease the chance of rain. Another seeing
clouds must deciding whether to take an
umbrella to work to avoid getting wet on
the way home? Both decisions could ben-
efit from an empirical duty of rain. But
each has different requirements of the es-
timator. One requires causality: do rain
dances cause rain? The other does not,
needing only prediction: is the chance of
rain high enough to merit an umbrella? We
often focus on rain dance like policy prob-
lems. But there are also many umbrella-like
policy problems. Not only are these predic-
tion problems neglected, machine learning
can help us solve them more effectively.

In this paper, we (i) provide a simple
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framework that clarifies the distinction be-
tween causation and prediction; (ii) explain
how machine learning adds value over tradi-
tional regression approaches in solving pre-
diction problems; (iii) provide an empir-
ical example from health policy to illus-
trate how improved predictions can gener-
ate large social impact; (iv) illustrate how
“umbrella” problems are common and im-
portant in many important policy domains;
and (v) argue that solving these problems
produces not just policy impact but also
theoretical and economic insights.1

I. Prediction and Causation

Let Y be an outcome variable (such as
rain) which depends in an unknown way on
a set of variablesX0 andX. A policy-maker
must decide on X0 (e.g. an umbrella or
rain-dance) in order to maximize a (known)
payoff function π(X0, Y ). Our decision of
X0 depends on the derivative

dπ(X0, Y )

dX0

=
∂π

∂X0

(Y )︸︷︷︸
prediction

+
∂π

∂Y

∂Y

∂X0︸ ︷︷ ︸
causation

Empirical work can help estimate the two
unknowns in this equation: ∂Y

∂X0
and ∂π

∂X0
.

Estimating ∂Y
∂X0

requires causal inference:
answering how much does X0 affect Y ?

The other term– ∂π
∂X0

–is unknown for a dif-
ferent reason. We know the payoff function
but since its value must be evaluated at Y ,
knowing the exact value of ∂π

∂X0
requires a

prediction Y . We know how much utility
umbrellas provide only once we know the
level of rain.

1A longer version of this paper–Kleinberg et al.

(2015a)–fleshes out each of these points, providing
greater detail on the model, the empirical work and a

more through summary of machine learning.
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Choosing X0 therefore requires solving
both causation and prediction problems.
Assume away one of these terms–place an
exclusion restriction–and only one problem
remains. Rain dances are a pure causal in-
ference problem because rain dances have
no direct effect on payoffs ∂π

∂X0
= 0. Um-

brellas are a pure prediction problem be-
cause umbrellas have no direct effect on rain
∂Y
∂X0

= 0.
This derivative also illustrates two key

features of prediction problems. First, the
need for prediction arises exactly because
∂π
∂X0

depends on Y . Prediction is necessary
only because the benefit of an umbrella de-
pends on rain. As we illustrate in the fi-
nal section, this kind of dependency is com-
mon for many important policy problems.
Second, because only Ŷ enters the decision,
prediction problems only require low error
in Ŷ ; they do not require the coefficients to
be unbiased or causal.

II. Machine Learning

As a result, standard empirical tech-
niques are not optimized for prediction
problems because they focus on unbiased-
ness. Ordinary least squares (OLS), for ex-
ample, is only the best linear unbiased es-
timator. To see how it can lead to poor
predictions, consider a two variable exam-
ple where OLS estimation produced β̂1 =
1± .001 and β̂2 = 4± 10, suggesting a pre-
dictor of x1 + 4x2. But given the noise in
β̂2, for prediction purposes one would be
tempted to place a smaller (possibly 0) co-
efficient on x2. Introducing this bias could
improve prediction by removing noise.

This intuition holds more generally. Sup-
pose we are given a data set D of n points
(yi, xi) ∼ G. We must use this data to pick

a function f̂ ∈ F so as to predict the y
value of a new data point (y, x) ∼ G. The
goal is to minimize a loss function, which
for simplicity we take to be (y − f̂)(x)2.

OLS minimizes in-sample error, choosing
from Flin, the set of linear estimators:

f̂OLS = argminfβ∈Flin

n∑
i=1

(yi − f(xi))2

but for prediction we are not interested in
doing well in sample: we would like to do
well out of sample. Ensuring zero bias in-
sample creates problems out of sample. To
see this, consider the mean squared error
at the new point x, MSE(x) = ED[(f̂(x)−
y)2]. This can be decomposed as:

ED[(f̂(x)− ED[ŷ0])
2]︸ ︷︷ ︸

V ariance

+ (ED[ŷ0]− y)2︸ ︷︷ ︸
Bias2

Because the f varies from sample to sample,
it produces variance (the first term). This
must be traded off against bias (the first
term). By ensuring zero bias, OLS allows
no tradeoff.

Machine learning techniques were devel-
oped specifically to maximize prediction
performance by providing an empirical way
to make this bias-variance trade-off (Hastie
et al., 2009 provide a useful overview). In-
stead of minimizing only in-sample error,
ML techniques minimize:

f̂ML = argminf∈F

n∑
i=1

(yi− f(xi))2 +λR(f)

Here R(f) is a regularizer that penalizes
functions that create variance. It is con-
structed such the set of functions Fc =
{f |R(f) ≤ c|} create more variable pre-
dictions as c increases. For linear models,
larger coefficients allow more variable pre-
dictions, so a natural regularizer is R(fβ) =
‖β‖d, which is the LASSO and RIDGE es-
timators for d = 1 and 2 respectively. In
effect, this minimization now explicitly in-
cludes a bias (in-sample error) and variance
term (R(f)), where λ can be thought of as
the price at which we trade off variance to
bias. OLS is a special case where we put an
infinite (relative) price on bias ( 1

λ
=∞).

A key insight of machine learning is that
this price λ can be chosen using the data
itself. Imagine we split the data into f sub-
sets (often called “folds”). For a set of λ,
we estimate the algorithm on f − 1 of the
folds and then see which value of λ pro-
duces the best prediction in the f th fold.
This cross-validation procedure effectively
simulates the bias-variance tradeoff by cre-
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ating a way to see which λ does best “out
of sample”.

These two insights–regularization and
empirical choice of the regularization
penalty–together also change the kinds of
predictors we can consider. First, they al-
low for “wide” data, to predict even when
we have more variables than data points.
For example, researchers using language
data often have ten or a hundred times as
many variables as data. Second, this al-
lows for far more flexible functional forms.
One can include many higher order interac-
tion terms or use techniques such as deci-
sion trees which by construction allow for a
high degree of interactivity.

Machine learning techniques are in one
sense not new: they are a natural offshoot
of non-parametric statistics. But they pro-
vide a disciplined way to predict ŷ which
(i) uses the data itself to decide how to
make the bias-variance tradeoff and (ii) al-
lows for search over very rich set of vari-
ables and functional forms. But everything
comes at a cost: one must always keep in
mind that because they are tuned for ŷ they
do not (without many other assumptions)

give very useful guarantees for β̂.

III. Illustrative Application

Osteoarthritis (joint pain and stiffness)
is a common and painful chronic illness
among the elderly. Replacement of the
affected joints, most commonly hips and
knees, provide relief each year to around
500, 000 Medicare beneficiaries in the US.
The medical benefits B are well under-
stood: surgery improves quality of life
over the patient’s remaining life expectancy
Y . The costs C are both monetary
(roughly $15, 000 calculated using 2010
claims data) and non-monetary: surgeries
are painful and recovery takes time, with
significant disability persisting months af-
terwards. The benefits accrue over time,
so surgery only make sense if someone lives
long enough to enjoy them; joint replace-
ment for someone who dies soon afterward
is futile–a waste of money and an unnec-
essary painful imposition on the last few
months of life.

The payoff to surgery depends on (even-
tual) mortality, creating a pure prediction
problem. Put differently, the policy chal-
lenge is: can we predict which surgeries will
be futile using only data available at the
time of the surgery? This would allow us
save both dollars and disutility for patients.

To study this example we drew a 20%
percent sample of 7.4 million Medicare ben-
eficiaries, 98,090 (1.3%) of which had a
claim for hip or knee replacement surgery in
2010.2 Of these,1.4% die in the month af-
ter surgery, potentially from complications
of the surgery itself, and 4.2% die in the
1-12 months after surgery. This low rate–
roughly the average annual mortality rate
for all Medicare recipients–seems to suggest
on average surgeries are not futile. But the
average is misleading because the policy de-
cision is really about whether surgeries on
the predictably riskiest patients was futile.

To answer this, we predicted mortality in
the 1-12 months after hip or knee replace-
ment using LASSO (see Kleinberg et al.,
2015a for full details).3 We used 65,395 ob-
servations to fit the models and measured
performance on the remaining 32,695 obser-
vations. 3, 305 independent variables were
constructed using Medicare claims dated
prior to joint replacement, including pa-
tient demographics (age, sex, geography);
co-morbidities, symptoms, injuries, acute
conditions and their evolution over time;
and health-care utilization.

These predictions give us a way to iso-
late predictably futile surgeries. In Table 1,
we sort beneficiaries by predicted mortality
risk, showing risk for the riskiest 1%, 2%
and so on, which is highly and predictably

2We restricted to fee-for-service beneficiaries with

full claims data living in the continental US, and exclude
any with joint replacement in 2009 (potentially implying

revision surgery or other complication of a prior proce-
dure).

3This interval reflects two choices. 1) We excluded

deaths in the first month after surgery to focus on pre-

diction of Y rather than the short-term causal effect of
X0 on Y (i.e., operative risk, post-surgical complica-

tions). 2) We chose a threshold of 12 months based

on studies showing substantial remaining disability 6
months after surgery, but improved clinical outcomes at

the 12-month mark (Hamel et al., 2008). Alternatively,
a ‘break-even’ threshold could be derived empirically.
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concentrated: for example, the 1% riskiest
have a 56% mortality rate, and account for
fully 10% of all futile surgeries.4

Imagine the dollars from these futile surg-
eries could instead have been spent on other
beneficiaries who would benefit more. To
understand the potential savings, we simu-
lated the effect of substituting these riski-
est recipients with other beneficiaries who
might have benefited from joint replace-
ment procedures under Medicare eligibility
guidelines, but did not receive them. To be
conservative, rather than comparing to the
lowest-risk eligibles, we draw from the me-
dian predicted risk distribution of these el-
igibles, and simulate effects of this replace-
ment in columns (3) and (4). Replacing
the riskiest 10th percentile with lower-risk
eligibles would avert 10,512 futile surgeries
and reallocate the 158 million per year (if
applied to the entire Medicare population)
to people who benefit from the surgery, at
the cost of postponing joint replacement
for 38,533 of the riskiest beneficiaries who
would not have died.5

IV. Prediction Problems Are Common
and Important

Our empirical application above high-
lights how improved prediction using ma-
chine learning techniques can have large
policy impacts (much like solving causal in-
ference problems has had). There are many
other examples as well. In the criminal jus-
tice system, for instance, judges have to de-
cide whether to detain or release arrestees
as they await adjudication of their case–a
decision that depends on a prediction about
the arrestee’s probability of committing a
crime. Kleinberg et al. (2015b) show that

4One might wonder whether these riskier patients
may also be the ones who also stood to benefit the most

from the procedure, potentially justifying surgery. How-

ever, variables that should correlate with surgery benefit
(number of physician visits for hip or knee pain, physi-

cal therapy and therapeutic joint injections) do not vary

significantly by predicted mortality risk.
5The existence of a large pool of low-risk beneficia-

ries potentially eligible for replacement argues against

moral hazard as an explanation for these findings, since
physicians who predicted well acting consistent with

moral hazard would first exhaust the low-risk pool of

patients before operating on higher-risk patients.

machine learning techniques can dramati-
cally improve upon judges’ predictions and
substantially reduce the amount of crime.

Other illustrative examples include: (i)
in education, predicting which teacher will
have the greatest value add (Rockoff et
al., 2011); (ii) in labor market policy, pre-
dicting unemployment spell length to help
workers decide on savings rates and job
search strategies; (iii) in regulation, target-
ing health inspections (Kang et al. 2013);
(iv) in social policy, predicting highest risk
youth for targeting interventions (Chandler
et al., 2011); and (v) in the finance sector,
lenders identifying the underlying credit-
worthiness of potential borrowers.

Even this small set of examples are bi-
ased by what we imagine to be predictable.
Some things that seem unpredictable may
actually be more predictable than we think
using the right empirical tools. As we ex-
pand our notion of what is predictable, new
applications will arise.

Prediction problems can also generate
theoretical insights, for example by chang-
ing our understanding of an area. Our em-
pirical application above shows that low-
value care is not due just to the stan-
dard moral-hazard explanation of health
economics but also to mis-prediction. The
pattern of discrepancies between human
and algorithmic decisions can serve as a
behavioral diagnostic about decision mak-
ing (Kleinberg et al. 2015b). And predic-
tion can shed light on other theoretical is-
sues. For example, understanding how peo-
ple change their behavior as regulators or
police change the algorithms they use to
target monitoring effort can shed light on
the game theory of enforcement.

Prediction policy problems are, in
sum, important, common, and interest-
ing, and deserve much more attention
from economists than they have received.
New advances in machine learning can be
adapted by economists to work on these
problems, but will require a substantial
amount of both theoretical and practical re-
orientation to yield benefits for those cur-
rently engaged in policy studies.
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Table 1—Riskiest Joint Replacements

Predicted Observed Futile Futile

Mortality Mortality Procedures Spending

Percentile Rate Averted ($ mill.)

1 0.435 1984 30
(.028)

2 0.422 3844 58
(.028)

5 0.358 8061 121
(.027)

10 0.242 10512 158
(.024)

20 0.152 12317 185
(.020)

30 0.136 16151 242
(.019)

Note:

1) We predict 1-12 month mortality using an L1 regularized logistic regression trained on 65, 395 Medicare ben-
eficiaries undergoing joint replacement in 2010, using 3, 305 claims-based variables and 51 state indicators. λ
was tuned using 10-fold cross-validation in the training set. In columns (1) and (2) we sort a hold-out set of
32, 695 by predicted risk into percentiles (column 1) and calculate actual 1-12 month mortality (column 2).

2) Columns (3) and (4) show results of a simulation exercise: we identify a population of eligibles (using published
Medicare guidelines: those who had multiple visits to physicians for osteoarthritis and multiple claims for
physical therapy or therapeutic joint injections) who did not receive replacement and assign them a predicted
risk. We then substitute the high risk surgeries in each row with patients from this eligible distribution for
replacement, starting at median predicted risk. Column (3) counts the futile procedures averted (i.e., replaced
with non-futile procedures) and (4) quantifies the dollars saved in millions by this substitution.




